

Functionalized Magnetic Nanoparticles: A Useful Tool in the Early Diagnosis and Therapy of Tumors

Claudio Sangregorio

C.N.R. - I.C.C.O.M. Istituto di Chimica dei Composti Organo-Metallici

INSTM Italian National Consortium of Material Science and Technology

Fac. Ingegneria - Univ. La Sapienza

Single theranostic nano-objects Diagnostics (MRI, Optical Imaging)

Therapy (magnetic-hyperthermia, drug release)

Fac. Ingegneria - Univ. La Sapienza

Roma September 22nd 2016

IJ

HYPERTHERMIA = extra heating of the human body or of a part of it

MAGNETIC FLUID HYPERTHERMIA (MFH)

hyperthermia assisted by magnetic nano-sized particles

Advantages:

reduction of side effects because of low electric field component (eddy current)
whole body irradiation by external

application

➤ strong localization

Theranostic effects:

Magnetic nanoparticles

Cancer cells

Magnetic field application (50-500 kHz)

> Apoptosis/ Necrosis

Fac. Ingegneria - Univ. La Sapienza

The feasibility of MFH has been already demonstrated in clinical tests (MagForce Charité Hospital, Berlin, Germany and Magforce USA)

Phase III Clinical Trial (2014/03/25,

309 patients)

"efficacy and safety of NanoTherm[®] monotherapy and NanoTherm[®] in combination with radiotherapy versus radiotherapy alone in recurrent/progressive glioblastoma"

Indication	Patients
Glioblastoma Multiforme	80
Prostata Cancer	29
Pancreatic Cancer	7

NanoActivator[®] devices are installed in Berlin, Münster, Kiel, Cologne and Frankfurt

MFH & Radiotherapy Results (MagForce) • **OS-2:** 13.4M (6.2M in previous Radio & Chemotherapy study) OS-2: overall after survival overall increase in survival > 7.2M diagnosis of first tumor recurrence • **OS-1:** 23.2M (14.6M in previous Radio & Chemotherapy study) OS-1: overall survival after overall increase in survival > 8.6M primary tumor diagnosis Few not severe side effects 35 mg/cm³ tumor f=100 kHz 12 nm amino-silane $T_{ave} = 51 \ ^{\circ}C$ H=2-15 kA/m coated Fe_3O_4 NP 3-D reconstruction of fused MRI and CT showing the tumor (brown), magnetic fluid (blue) and thermometry catheter (green)

Fac. Ingegneria - Univ. La Sapienza

What is missing in MFH?

lower amount of material smaller NPs (longer circulation time life) large SAR to treat

smaller tumors

Fac. Ingegneria - Univ. La Sapienza

Materials

Spinel Ferrite

$(\mathbf{M}_{1-i}\mathbf{F}\mathbf{e}_i)^{\mathsf{T}}[\mathbf{M}_i\mathbf{F}\mathbf{e}_{2-i}]^{\mathsf{O}}\mathbf{O}_4$

- i = inversion degree
- i = 0 normal spinel
- i = 1 inverted

Unit cell: $(AB_2O_4)_8$ cubic closed-packed array of 32 oxide ions forms 64 T_d and 32 O_h cavities

 Ferrimagnetic behavior due to the AF coupling of moments in T_d and O_h sites

The magnetic properties can be drastically modified by simply replacing, either completely or partially, metal ions or by modifying the inversion degree without affecting the crystal structure.

Fac. Ingegneria - Univ. La Sapienza

The effect of the size: Rhamnose coated Fe₃O₄ MNPs

Fac. Ingegneria - Univ. La Sapienza

Roma September 22nd 2016

n

Towards higher SAR values: increasing the magnetic moment 👔

Higher M_S produces higher hyperthermal efficiency ... but also

SAR $\approx f H_0^{2}M$ ωτ [1+ (ωτ)²]

Fac. Ingegneria - Univ. La Sapienza

The effect of Zn doping

Fac. Ingegneria - Univ. La Sapienza

Doping with the diamagnetic Zn²⁺ ion

d = 8.2 nm

*Co*_{0.57}*Zn*_{0.13}*Fe*_{2.3}*O*₄

Fac. Ingegneria - Univ. La Sapienza

0 2 4 6 8 10 12 14 16 18 20 d (nm)

200-

150-

100 counts

50

The effect of the Zn: $Co_{0.57}Zn_{0.13}Fe_{2.3}O_4$

Co_{0.57}Zn_{0.13}Fe_{2.30}O₄ SA

SAR 47.1 W/g

 $M_{s} = 101.3 \ emu/g$

£

Nanoparticles mineralized in ferritin

Ferritin (Ft) is an ubiquitary protein

- ✓ 24 subunits assembled in a cage-like architecture
- ✓ internal cavity of 8 nm diameter
- ✓ external diameter of 12 nm
- ightarrow Involved in iron homeostasis (iron sequestration and storage)

→natural system that can be finely tailored for the realization of theranostic applications
✓ possibility of mineralizing different inorganic materials in the Ft cavity
✓ genetical and chemical modifications on the protein surface

Human H chain Ft (HFt) → Potential low or null immunogenicity!

Fac. Ingegneria - Univ. La Sapienza

Design of a theranostic platform: HFt-MSH NPs

Dr. P. Ceci C.N.R. Inst. of Molecular Biology and Pathology, Dept. of Biochemical Sciences', La Sapienza, Univ.of Rome

Fac. Ingegneria - Univ. La Sapienza

Optimization for magnetic fluid hyperthermia

Iron oxide NPs@HFt-MSH

- ✓ Promising candidate as MRI–CA and drug delivery
- ✓ Excellent targeting properties
- ✓ High biocompatibility

 Constrains on size: maximum 8 nm, too low in order to observe hyperthermic efficiency for magnetite

How to enhance the hyperthermic efficiency?

$$SAR \approx f \cdot H_0^2 \cdot M_s^2 \underbrace{\mathcal{O}}_{1+(\omega \tau)^2}^{\omega \tau}$$

$$\tau = \tau_0 \exp(KV/k_B T)$$

Increasing magnetic anisotropy

Increasing mean NPs size

L. Lartigue; C, Sangregorio et al. J. Am. Chem. Soc. 2011, 133, 10459

Increasing the magnetic anisotropy: Co doping

Replacing of divalent iron with Co²⁺

K _{bulk} of cobalt ferrite ca. 20 times larger than magnetite

 $Co_{x}Fe_{3-x}O_{4}NPs$

Co content

Strong increase of the magnetic anisotropy on Co substitution →even for small Co %

Evaluation of Co doping effect on hyperthermic properties of HFt-MSH NPs

E. Fantechi *et al. J. Phys. Chem. C* **2012**, 116, 8261–8270 E. Fantechi *et al. J. Magn. Magn. Mat.* **2014** doi:10.1016/j.jmmm.2014.10.082

Synthesis and Characterization of Co-doped HFt-MSH NPs 👔

✓ Co doping strongly increases SAR up to 5%
✓ Above 5% an unxepected decrease is observed

✓ No effect of magnetic field alone

- ✓ No effect observed for HFt_0% Co
- ✓ Significant effect for HFt_5 % Co

Good hyperthermic cytotoxicity even with very low SAR
High degree of cellular internalization

E. Fantechi et al. ACS Nano 2014, 8, 4705.

M. Zanardelli, Dr. L. Di Cesare Mannelli, Prof. C. Ghelardini Dip. NEUROFARBA - Sez. Farmacologia e Tossicologia, Univ. di Firenze

Fac. Ingegneria - Univ. La Sapienza

Increasing NPs size: a new hybrid nanoplatform

RA

Magnetite Nanoparticles functionalized with *apo*-HFt

System with higher SAR with respect to Co-doped magnetite NPs mineralized in HFt

Excellent properties of HFt retained

 \blacktriangleright Avoiding the use of Co²⁺, potential issue of toxicity

Synthesis by surfactant-assisted thermal decomposition of organo-metallic precursors

Fac. Ingegneria - Univ. La Sapienza

Hyperthermic efficiency of NPs-HFt on PC3 cell line

Fac. Ingegneria - Univ. La Sapienza

Roma September 22nd 2016

Ð

The ideal clinical application of MFH

Create a versatile nanoplatform with multiple functionalities to target, image and treat cancerous cells

-Toxicity

- -Maximize SAR and minimize dose (too high concentration of MNPs)
- -Nanoparticle delivery to the tumour
- -Intratumoral MFH need of controlled homogenous distribution of MNPs in the tumor mass
- -Local uniform heating diffusion to tumour tissues
- -Study of heat flow into surrounding tissue and through it
- -Elimination of necrotic material
- -Combination therapies
- -Understanding MNP cell interactions
- -Macrophages uptake/protein corona (too big MNPs hydrodynamic diameter?)
- MNPs fate

Acknowledgements

<u>INSTM-La.M.M.</u> <u>Univ. di Firenze</u>

- C. Innocenti
- E. Fantechi
- M. Albino
- A. Guerrini

Collaboration

- A. Lascialfari (Univ. Milano)
- P. Ceci (CNR-IBPM)
- E. Falvo (CNR-IBPM)
- M. Zanardelli (Dip. Neurofarba Univ. Firenze)
- L. Di Cesare Mannelli (*Dip. Neurofarba Univ. Firenze*)
- C. Ghelardini (*Dip. Neurofarba Univ. Firenze*)
- A Ponti (CNR-ISTM)
- A. Ferretti (CN-ISTM)

Thank you for your attention

Fac. Ingegneria - Univ. La Sapienza